Adaptive Distributed Intrusion Detection using Hybrid
نویسندگان
چکیده
Assuring secure and reliable operation of networks has become a priority research area these days because of ever growing dependency on network technology. Intrusion detection systems (IDS) are used as the last line of defense. Intrusion Detection System identifies patterns of known intrusions (misuse detection) or differentiates anomalous network data from normal data (anomaly detection). In this paper, a novel Intrusion Detection System (IDS) architecture is proposed which includes both anomaly and misuse detection approaches. The hybrid Intrusion Detection System architecture consists of centralized anomaly detection and distributed signature detection modules. Proposed anomaly detection module uses hybrid machine learning algorithm called k-means clustering support vector machine (KSVM). This hybrid system couples the benefits of low false-positive rate of signature-based intrusion detection system and anomaly detection system’s ability to detect new unknown attacks.
منابع مشابه
MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security
Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...
متن کاملAdaptive Distributed Intrusion Detection using Hybrid K-means SVM Algorithm
Assuring secure and reliable operation of networks has become a priority research area these days because of ever growing dependency on network technology. Intrusion detection systems (IDS) are used as the last line of defence. IDS identifies patterns of known intrusions (misuse detection) or differentiates anomalous network data from normal data (anomaly detection). In this paper, a novel Intr...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کامل